The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products
نویسندگان
چکیده
A plateau scale soil moisture and soil temperature observatory is established on the Tibetan Plateau for quantifying uncertainties in coarse resolution satellite and model products of soil moisture and soil temperature. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) consists of three regional scale insitu reference networks, including the Naqu network in a cold semiarid climate, the Maqu network in a cold humid climate and the Ngari network in a cold arid climate. These networks provide a representative coverage of the different climate and land surface hydrometeorological conditions on the Tibetan plateau. In this paper the details of the Tibet-Obs are reported. To demonstrate the uniqueness of the TibetObs in quantifying and explaining soil moisture uncertainties in existing coarse satellite products, an analysis is carried out to assess the reliability of several satellite products for the Naqu and the Maqu network areas. It is concluded that global coarse resolution soil moisture products are useful but exhibit till now unreported uncertainties in cold and semiarid regions – use of them would be critically enhanced if uncertainties can be quantified and reduced using in-situ measurements. Correspondence to: Z. Su ([email protected])
منابع مشابه
Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet
This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25-50 km) satellite soil moisture products and compris...
متن کاملBlending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau
The inter-comparison of different soil moisture (SM) products over the Tibetan Plateau (TP) reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the...
متن کاملA Method for Downscaling FengYun-3B Soil Moisture Based on Apparent Thermal Inertia
FengYun-3B (FY-3B) soil moisture product, retrieved from passive microwave brightness temperature data based on the Qp model, has rarely been applied at the catchment and region scale. One of the reasons for this is its coarse spatial resolution (25-km). The study in this paper presented a new method to obtain a high spatial resolution soil moisture product by downscaling FY-3B soil moisture pr...
متن کاملEvaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau
[1] A multi-scale soil moisture and temperature monitoring network, consisting of 55 soil moisture and temperature measurement stations, has been established in central Tibetan Plateau (TP). In this study, the station-averaged surface soil moisture data from the network are used to evaluate four soil moisture products retrieved from the Advanced Microwave Scanning Radiometer-Earth Observing Sys...
متن کاملImproving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST
Uncertainties in model parameters can easily result in systematic differences between model states and observations, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System) brightness temperature...
متن کامل